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In this article a simple and concise expression for the range correction for an
atmosphere which possesses arbitrary radial, lateral, and azimuthal gradients of
the index of refraction is presented. The validity of this expression hinges only
on the assumption that the index of refraction is close to unity, an assumption
which is well satisfied for the Eartl’s atmosphere. Furthermore, it is shown that
the range corrections for a simple model of the Earth’s troposphere, including
typical lateral variations, are in close agreement with existing computer solutions.

I. Introduction

Hand in hand with the ever increasing complexity of
unmanned space missions, there is an ever increasing
need for higher accuracies in orbit determinations. The
orbit or trajectory is primarily determined by measuring
the range, p, and by measuring the time rate of change
of the range, p. The present status of the accuracy is
about 7 m for range and 1.3 m/12 h for the range rate
(Ref. 1). That is, at a distance of 1 AU (1.5+10% km)
the range can be measured within 1 m (approximately
1 part in 10""), and the velocity of the spacecraft (typi-
cally 10 km/s) is known to 1 part in 10°. In order to
achieve these enormous accuracies, a great number of
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error sources have to be analyzed and accounted for.
Since the range is measured by a time measurement (the
transit time of a radio signal between Earth and the space-
craft) and velocities are measured by cycle counting
(doppler shift), there ensues a plethora of possible error
sources. Those errors due to hardware and software of
the DSN have been enunciated elsewhere (Ref. 2).
Further, atmospheric and cosmic noise is, of course,
degrading the signal. But this is not all. Severe degrada-
tion of the range determination comes about via the
interaction of the radio signal with the intervening tenu-
ous matter. These interactions can conveniently be classi-
fied as due to the troposphere, the ionosphere, and the
solar wind. Although the refractive index of these strata
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is close to unity, they nevertheless give rise to sizable
range errors, sizable in the sense that the errors intro-
duced are larger than the required accuracy (1 m). For
instance, at an elevation angle of 10 deg in a configura-
tion such that the spacecraft is at a distance of 1 AU
and the Sun-Earth-probe angle is 40 deg and it happens
to be local ncon (the ionospheric electron concentration
is higher in daytime), the range error due to the tropo-
sphere is 10 m, that due to the ionosphere is 10 m, and,
finally, that due to the solar wind is 10 m, and they are
all additive. Of course, the values just quoted are only
representative and are by no means accurate, since all
so-called “media range corrections” are sensitive func-
tions of their respective variables (elevation angle for
instance, etc.).

In this article, we address ourselves to two main cul-
prits: the troposphere and the ionosphere or, generally
speaking, the atmosphere. It will be shown that the
range correction can actually be determined by a simple
and concise expression (Eq. 42 of the text).! There is no
need for extensive ray-tracing programs. All that has to
be known is the refractive index profile within the un-
perturbed (straight) ray path. The accuracy of expres-
sion (42), which makes use of the fact that n — 1« 1,
where n is the refractive index, is proportional to (n — 1)
and therefore lies well within the cm range. It is hoped
that the simplification arrived at in the following pages
alleviates to some extent the complex question of range
calibration.

Il. Troposphere

In the spherical coordinate system depicted in Fig. 1,
we express the refractive index of the troposphere by

n(r8) =1+ o F(r,6) (1)

where & 1 and F is an arbitrary function of the two
variables, r the. distance from the Earth’s center, and #
the angle between an (arbitrary) z axis and the radial
distance to a point in space. A fairly accurate example
is given by the following very simple model of the
troposphere:

ozi3°10‘4 - 2
F(r,0)~exp|:— T :l

*Knowing, of course, the intervening density profiles of both the
troposphere and the ionosphere.
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an exponentially decreasing refractive index with scale
height H. As we can see, the requirement o« 1, which

will play a vital role in our subsequent analysis, is in-
deed satisfied.

Let us suppose for a moment that a = 0, or that the
atmosphere is absent. In this case the ray path between
a distant spacecraft and the point of observation, speci-
fied by the coordinates r =R and ¢ =4, is a straight
line. A convenient expression is

8(r) = 6,(r) =6 — y + cos™ <§$> (3)

that is to say that each point on the straight line, ex-
pressed analytically by Eq. (3), is uniquely determined
by its geocentric distance r. From Eq. (3), it follows that

2 07
A

which we need for future references.?

= Rcosy (4)

Suppose now that the troposphere is present and repre-
sented by the refractive index (1). Taking = as the inde-
pendent variable, the ray path may now be expressed by?

0(r) = 85(r) + 84(r) (5)
where 6, is given by Eq. (3) and

2
— K
- <1 (6)

due to the fact that n — 1 € 1. We do not need to solve
the Euler equation associated with 6,. All we have to do
to determine 6, uniquely is to postulate that at the ob-
servation point:

6:(R) = 0

(7)
6,(R) =0

This is not a restriction since the differential equation
governing 6, is of second order. Taking the elevation
angle explicitly into account, we may write for the ray
path disturbed by the troposphere:

0(7’,7) = 00(1‘,‘}/) + 01(T,y) (8)

*The prime means différentiation with respect to 7.
30mitting azimuthal variations for the time being,
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From Eq. (8), it is clear that the ray (8) will emerge
from the troposphere at a certain angle, which for large
r becomes

oooy) =5 + 0=y + () (9)

On the other hand, the unperturbed beam’s limiting
angle for large r is simply given by

T -
b(oy) =5+ 07 (10)

-

The reason for this, of course, is that the unperturbed
and the perturbed beams start off at the same elevation
angle. To remedy the situation we must insist that the
two beams are parallel to each other (for a distant space-
craft) after having left the troposphere. The angles (9)
and (10) must therefore be the same. To achieve this we
must correct the elevation angle y in Eq. (8) in the fol-
lowing manner:

0(ry') = 6, (1;y + 6:(07)) + 6:(ry)

¢,

¢
= 0,(ry) + 6:(0,y) =
oy

-+ 64(r,y) (11)

again in first order. From Eq. (3), it follows that

of ‘ R2cos’y\ ™R .
= —1- <1 - T) 7SII1'y (12)

so that, indeed,
8(0,y") = o(0,y) (18)

It is now an easy matter to compute the range correc-
tion due to the influence of the troposphere. It is clear
that the topocentric distance to the spacecraft is simply
given by

- f C ITT oG T dr (14)

if the atmosphere is absent. The angle 6, in Eq. (14) is
given by Eq. (3). Therefore the range Eq. (14) is merely
an integral along a straight line. The upper limit oo is
only taken for convenience, signifying that the spacecraft
is many Earth radii away. On the other hand, the ap-
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parent topocentric range, taking explicitly the troposphere
into account, is given by

o= [ ntrtr)) VIFFIRTT dr
R

(15)
where 6(r;y’) is found from Eq. (11) and therefore duly

recognizes the correction to the elevation angle. In first
order we have then for the range correction:

0 r2 0{)

0’
Ap=p,—py= | —————| 0, + (e °>dr
P R\/1+r2(0{))2( L=

+ / T (= D)VIF @) dr (16)

Taking into account Egs. (4) and (12), we see that the
first integral in Eq. (16) actually vanishes since

0 1206 80,
——( 0, - (o) =2 )d
" \f1+r2<6"052<1 1(°°>ay> '

060,( 0
i)(y )> =0 (17)

We have, therefore, the result, using explicitly Eq. (3)
for 6,:

:RCOSygl(oo)(l +

o0 R‘_’. 2 ~la
ApZ/ (n—1)<1—+‘f”-> ar (18)
R

We have then the remarkable result that as long as
n— 1«1 and a first-order perturbation theory is ade-
quate, the range correction is simply the integral over
the unperturbed (straight) ray path weighted with that
part of the refractive index which deviates from unity.
There is no need to compute the actual ray path, the
bending and twisting of it and so forth. Inserting Eq. (1)
into Eq. (18) yields

0 2 2 -
Ap = a/ F (1, 8(r,7)) (1 - MSJ) dr (19)
R

1-2

where, of course, 6, is given by Eq. (3). Equation (19)
holds for all elevation angles but must be computed
numerically for most cases of interest, particularly at low
elevation angles. However, at higher elevation angles
(y > 10°), considerable simplifications arise if simple but
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adequate tropospheric models are used. We shall do so
now. For y > 10° and an exponentially decreasing re-
fractive index, the square root under the integral sign
may be approximated by

Rz ~la
<1 — 7 cos® 'y> == (sin y)~ (20)

and if we assume for n — 1:

n—1=all 2(4, —5)]exp[—%:l (21)

with & = 3+10~* and H = 7 km,* we obtain immediately
from Eq. (19)

o

Ap = H =+

sin Y

S?n“y A “dr exp [— 1;_3} (8u(ry) — B)
(22)

The first term on the right-hand side of Eq. (22) repre-
sents the contribution to the range correction due to the
radially stratified troposphere. The second term is due to
lateral inhomogeneities. With the aid of Eq. (3), it can
be expressed as

_ 2a [* r—R j L[ Rcosy
[ o] ()

The rapid decrease of the integrand, because of the ex.
ponential, makes it clear that for the curly bracket we
can use the following approximation:
cos
) s
r r=R

R cos 0 R
cos™t ) - vy =49=cos™
r or
sin Y R (24)

_cosy r—R

Using Eq. (24) we obtain readily for the integral (23):

2acosy H
ST %)
Therefore, the total range correction is given by
o« 2a cosy H
A =S 7 e y R (26)

#The value *=2(6, — &) for typical lateral inhomogeneities of the
refractive index is a good approximation to existing data (Ref. 3).
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for elevation angles y larger than 10 deg. For elevation
angles less than 10 deg approximately, Eq. (19) must be
determined numerically. However, determining Ap from
Eq. (26), together with the numerical values given above,
yields at y = 10 deg:

Ap = (12.1 = 0.2) meter (27)

in complete agreement with the work of other researchers
(Ref. 4).5

We now extend this work to the case in which n is
also a function of the azimuthal angle &, in other words
n = n(r, 6, ). It is clear that if § = 0 in Fig. 1, every un-
perturbed ray lies in a meridian plane and its azimuthal
angle is ®, = constant. Suppose that n is also a function
of ®. In that case the ray path will be twisted ever so
slightly, also in an azimuthal direction, and we have

B(r) = @, + by(r,y) (28)

where again &,/3, € 0 and

(I)I(R"Y) = }
(29)
] (R’Y) =0

just as in Eq. (7). In order for the ray path to be parallel
to the unperturbed ray after leaving (or before entering)
the troposphere (as the case may be), we must have

Bp = Py + By(0,y) (30)

But since the line element in this case is given by

dS = VI F¥ 7 (F) T Psm (&) dr (31)

and noting that (') = (#/) is of second order, we see
that the result (19) is still valid with the stipulation that

Ap =« / F(1, 8(r,y), &)
R

2 2 —1V2
><(1 _ Ricosty V) dr (32)

rz

®Also see Chao, C. C., “Tropospheric Range Effect Due to Simu-
lated Inhomogeneities by Ray Tracing” (this volume).
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This is true in the special coordinate system in which
g = 0. But since Ap is an invariant length in any general
coordinate system, expression (32) is still valid but the
angles 6, and ®, have to be replaced by their appropriate
values. If, for instance, the angle between the projection
of the line of sight and the meridian is « and if we put
®, = 0 for simplicity, the connection between the angles
¢ and @ of the general coordinate system® and the special
angles 6, and &, = 0 is given by

sin @ sin & =~— sin « sin §, l
’ (33)

cos 8 = — cos a sin 6 sin 6, + cos 8 cos 6§

In any case, it is clear from Eq. (32) that azimuthal
gradients only give rise to second-order effects for the
range correction.

lll. lonosphere

The work done so far has only dealt with the tropo-
sphere, but it is easy enough to incorporate the iono-
sphere in the same vein. For instance, consider the
refractive index of a plasma:

n=/1—— (34)

where the plasma frequency w, is given by

2 Ve
w, = (471' e N) (35)

m

with N the electron number density per cm?, and w the
frequency of the radio beam traversing the ionosphere.
For the DSN frequencies w = 10" sec™* and for the pre-
vailing ionospheric electron densities of N~ 10° cm™,
we have

2

le (36)

n:1~2w2

since w? /w* ~ 1073 is very small. For a determination of
the ray path in the charged-particle medium, essentially

6A coordinate system which may have the Earth’s spin axis as Z
axis. We are thinking of a global chart of tropospheric conditions,
something which does not exist yet.
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the same Ferma principle holds as it does for the tropo-
sphere, namely,

s / n(r,,0,w)ds =0 (37)

where n is now given by Eq. (36). To determine the range
correction we must, however, be precise because of dis-
persion. The range is usually measured by comparing a
received range code with an internally generated code
carefully calibrated with a clock. A range code consti-
tutes a modulated signal and propagates, therefore, with
the group velocity which differs from the phase velocity
by w?/w? within the approximation used to obtain Eg.
(36). Whereas the phase velocity is given by

e
v, = c(l + 2102) (88a)
the group velocity is given by
_ w;
Vg =¢ <1 — 2w2> (38b)

It is also clear that the modulation is “riding” on the
carrier frequency or in Fourier language, the modulation
consists of frequency components very close to the car-
rier frequency and therefore the ray path is governed by
Eq. (37) with w being the carrier frequency (==10%°
rad/s). Accordingly, the range correction due to the
ionosphere is determined by the difference

ds
— " P (39)

where dS is a solution of Eq. (87) and p, is given by
Eq. (14). The same analysis which led to Eq. (18) can
now be carried out without change to yield the follow-
ing expression for the range correction:

o0 2 2 2 -2
Ap; :/ o (1 _ Ricos 7) dr (40)
R

w? 72

Furthermore, it can be shown from Maxwell’s equations
(Ref. 5) that the dielectric constant of a medium consist-
ing of a neutral polarizable background (here the tropo-
sphere) and a plasma (here the ionosphere) is simply
given by the sum:

€=¢€ ——= (41)
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where ¢, is the dielectric constant of the neutral medium.
Collecting Egs. (32), (35), and (40) and expressing every-
thing in terms of the unperturbed ray path, we have as a
final result:

4] Rz 2 -2
Ap = / dr(l - $> { o F(r, 8y(r,y), )
R

2me?

muw?

+ N(r, 6(r,y), <I>0)} (42)

expressing the range correction as a single integral over
the unperturbed ray path, combining both the troposphere
and the ionosphere in one expression.

In conclusion we would like to mention and elaborate
on the time variations of the atmosphere. First of all, it
is clear that any time variations (day-night changes,
seasonal changes, turbulent fluctuations, etc.) by and
large have a very long time scale compared to the transit
time of the signal which is of the order of 10~ s at most.
Therefore, time enters Eq. (42) strictly as an additional
parameter £. The range rate or the time derivative of the
range is then given by expression (42), in which both F
and N are differentiated with respect to time. If, how-
ever, the range rate Ap, is measured via doppler by
referencing cycles of a received monochromatic signal
with an internally generated monochromatic signal (a

clock), the correct expression for Ag, taking the phase
velocity Eq. (38a) into account, is

o0 RZ 2 -la d
30 = | ar( 1 - { 0L F(r, 0r), s 1)
R r dt

2ne® d
T dr N(r, 0o(1,7), ®o; t)} (43)

IV. Summary

On the preceding pages, simple expressions, both for
the range correction Ap and for the range rate correction
Ap due to a tenuous atmosphere, have been derived. To
be sure these expressions are approximate and are only
valid if the refractive index of the atmosphere is close to
unity. This is very well satisfied for the Earth’s atmos-
phere. In as much as second-order effects may be ne-
glected, the theory presented here is completely general.
All that has to be known is the electron density profile
and the neutral gas density profile within the undisturbed
line of sight between the Earth-bound station and the
spacecraft. Although, as already mentioned, the expres-
sion for the range correction is rather simple, for low
elevation angles and realistic density profiles the integral
must probably be computed numerically. Work along
these lines and also the incorporation of the solar wind
into our model is in progress.
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Fig. 1. Geometry of ray paths
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